The Future of

Bayesian Network Modelling

Advances in Integrated Modelling Technologies with Bayesian Networks

Bruce G. Marcot, U.S. Forest Service Trent D. Penman, The University of Melbourne

BN modeling is useful for:

- data mining
- causal modeling
- representing expert knowledge
- combining expert knowledge and empirical data
- identifying key uncertainties
- much more !

BN modeling is useful for:

- data mining
- causal modeling
- representing expert knowledge
- combining expert knowledge and empirical data
- identifying key uncertainties
- much more !

BNs provide a highly flexible network structure, lending to integration with other modeling technologies and approaches

Geographic Information Systems – GIS BNs

Havron et al., B. G., and T. D. Penman, 2017, Ecosphere 8(7):e01859

(b)

Dynamic Bayesian Networks -DBNs

Marcot & Penman, 2019, Environ. Mod. & Softw. 111:386-393.

Bayesian Decision Networks - BDNs

Marcot, unpub. Dynamic Decision Networks - DDNs

Structural Equation Modeling - SEM

Bayesian Neural Networks

Fig. 1. Sketch of a MLP with d inputs and h hidden units, in our case, d = 14 (see Table 1). The output y is the next day's load at the same hour.

Lauret et al., 2008, Energ. Convers. & Mgmt 49(5):1156-1166.

Object-Oriented Bayesian Networks -OOBNs

Johnson et al., 2013, Ecosphere 4(7):DOI: 10.1890/ES12-00357.1

Agent-based Bayesian Networks

Fig. 5. Direct and indirect interactions among agents. Source: Adapted from Janssen and Ostrom (2006).

Sun & Müller, 2013, Env. Model. & Softw. 45:15-28.

State-andtransition Bayesian Networks -STM-BNs

Marcot, unpub.

BNs Within Things!

McColl-Gausden et al., 2022, Global Climate Change Biol. 28:5211-5226.

Riparian Habitat (r) present 0.3162 e ^{iθ(r=true)} absent 0.9487 e ^{iθ(r=false)} Low-lying Acacia Woodland, Thorn Scrub, Savanna (w) present 0.8367 e ^{iθ(w=true)} absent 0.5477 e ^{iθ(w=false)}			
		Bat Habitat	
Riparian	Woodland	Good	Poor
present absent present absent	present present absent absent	0.9487 e ^{iθjt wt,rt} 0.8944 e ^{iθjt wt,rf} 0.8944 e ^{iθjt wf,rf} 0.7071 e ^{iθjt wf,rf}	0.3162 $e^{i\theta jf wt,rt}$ 0.4472 $e^{i\theta jf wt,rf}$ 0.4472 $e^{i\theta jf wf,rf}$ 0.7071 $e^{i\theta jf wf,rf}$

Quantum Bayesian Networks -QBNs

Figure 4. EcoQBN representation of the occurrence of two environments and their combinations to form quantum conditional probability values of the habitat quality for yellow-winged bats.

What's Next ... ??

- Real-time applications & updating ?
- Crowd-sourced BNs ?
- Big Data BNs ?
- Self-organizing BNs ?

Where ... to ... next ??

The Future of

Bayesian Network Modelling